TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Show HN: Python package for generating accurate SQL via LLMs using RAG

7 点作者 zainhoda超过 1 年前
Hello HN! We’ve been working hard on Vanna, our RAG framework for SQL generation and we’ve been updating our documentation. Please have a look — we have a ton of Jupyter notebooks for any combination of desired use cases.<p>At it’s heart, we have abstractions that help you:<p>- “train” a RAG “model” i.e. add metadata for the retrieval augmentation system to reference when constructing the LLM prompt (yes, we know that the terms “train” and “model” are somewhat confusing and we’re open to changing those terms if you can suggest better ones)<p>- “ask” questions, which will generate SQL, run it, produce charts, etc<p>You can use this in:<p>- Jupyter notebooks<p>- Streamlit (open-source code provided)<p>- Flask (open-source code provided)<p>- Slack (open-source code provided)<p>One key thing to note is that in most of the user interfaces, there’s an opportunity for something _akin_ to RLHF. If the user says that a generated query was correct for a question, then it’s stored back in the vector database for future reference, making the “model” more accurate over time.<p>You can plug it into any LLM or vector database. In the next couple of days we’ll be adding built-in connectors for Mistral, Gemini, and Anthropic.

暂无评论

暂无评论