TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Benchmarking Postgres Vector Search Approaches: Pgvector vs. Lantern

60 点作者 samaysharma超过 1 年前

5 条评论

dmezzetti超过 1 年前
If you&#x27;d like an alternate approach, txtai can store content in Postgres. This approach stores metadata&#x2F;fields in the database and builds a Faiss&#x2F;HNSW index alongside. The idea is to lean on two mature projects vs having to rewrite a full vector index implementation.<p><a href="https:&#x2F;&#x2F;neuml.hashnode.dev&#x2F;external-database-integration" rel="nofollow">https:&#x2F;&#x2F;neuml.hashnode.dev&#x2F;external-database-integration</a><p><a href="https:&#x2F;&#x2F;github.com&#x2F;neuml&#x2F;txtai">https:&#x2F;&#x2F;github.com&#x2F;neuml&#x2F;txtai</a><p>Disclaimer: I&#x27;m the primary author of txtai
chuckhend超过 1 年前
Really great to see how the different config parameters (m, ef_construction, ef_search) impact latency and recall.
darrenBaldwin03超过 1 年前
Interesting blog! Makes me wonder what a comparison between Pinecone + ChromaDB + Pgvector would look like..
systems超过 1 年前
in summary it seems pgvector is faster where it counts
评论 #39034193 未加载
nikita超过 1 年前
Does pgvector use parallel index build in this benchmark ?
评论 #39034057 未加载