TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling

3 点作者 jasondavies超过 1 年前

1 comment

gbickford超过 1 年前
This paper is well written. The results are pretty wild. They observed some amazing reduction in training resources required to achieve similar benchmarks to models trained on conventional data:<p>&gt; We observe that even at the first checkpoint (10B tokens) of WRAP training, the average perplexity of the LLM on the Pile is lower than that achieved by pre-training on C4 for 15 checkpoints. This suggests a 15x pre-training speed-up.