The language is far from stable, but I have had a LOT of fun writing Mojo code. I was surprised by that! The only promising new languages for low-level numerical coding that can dislodge C/C++/Fortran somewhat, in my opinion, have been Julia/Rust. I feel like I can update that last list to be Julia/Rust/Mojo now.<p>But, for my work, C++/Fortran reign supreme. I really wish Julia had easy AOT compilation and no GC, that would be perfect, but beggars can't be choosers. I am just glad that there are alternatives to C++/Fortran now.<p>Rust has been great, but I have noticed something: there isn't much of a community of numerical/scientific/ML library writers in Rust. That's not a big problem, BUT, the new libraries being written by the communities in Julia/C++ have made me question the free time I have spent, writing Rust code for my domain. When it comes time to get serious about heterogeneous compute, you have to drop Rust and go back to C++/CUDA, when you try to replicate some of the C++/CUDA infrastructure for your own needs in Rust: you really feel alone! I don't like that feeling ... of constantly being "one of the few" interested in scientific/numerical code in Rust community discussions ...<p>Mojo seems to be betting heavy on a world where deep heterogeneous compute abilities are table stakes, it seems the language is really a frontend for MLIR, that is very exciting to me, as someone who works at the intersection of systems programming and numerical programming.<p>I don't feel like Mojo will cause any issues for Julia, I think that Mojo provides an alternative that complements Julia. After toiling away for years with C/C++/Fortran, I feel great about a future where I have the option of using Julia, Mojo, or Rust for my projects.