TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Show HN: CaptureFlow – LLM codegen/bugfix powered by live application context

6 点作者 chaoz_大约 1 年前
Hi Hacker News,<p>As a dev extensively using GPT-4 for coding, I&#x27;ve realized its effectiveness significantly increases with richer context (e.g., code samples, execution state - props to DevinAI for famously console.logging itself).<p>This inspired me to push the idea further and create CaptureFlow. This tool equips your coding LLM with a debugger-level view into your Python apps, via a simple one-line decorator.<p>Such detailed tracing improves LLM coding capabilities and opens new use cases, such as auto-bug fix and test case generation. CaptureFlow-py offers an extensible end-to-end pipeline for refactoring your code with production data samples and detailed implementation insights.<p>As a proof of concept, we&#x27;ve implemented an auto-exception fixing feature, which automatically submits fixes via a GitHub bot.<p>---<p>Support is limited to Only OpenAI API and GitHub API.

2 条评论

azeevg大约 1 年前
interesting, I wonder what are the odds of introducing new bugs like not closing connections etc. I can imagine many tests passing after such change but actual failure happening on production. Is it something embedded context can help to address?
veronkek大约 1 年前
How it handles edge cases in Python that aren&#x27;t as straightforward?
评论 #39934759 未加载