TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Ask HN: What is the state of other types of AI?

6 点作者 jamilbk10 个月前
Hi HN,<p>This is a question I&#x27;ve found myself wondering a lot recently. There&#x27;s obviously been lots of recent progress in the state-of-the-art for LLMs and generative AI, but is this progress trickling over to other areas of AI such as machine&#x2F;deep learning?<p>If so, what are some resources to get up to speed quickly?

2 条评论

sk1100110 个月前
It’s good and useful. Some use cases in NLP have moved over to using LLMs, many use cases in NLP&#x2F;vision are basically using pre trained models and adding some simple similarity search or simple classification on top of it. Then you have a bunch of deep learning and non-dl methods for forecasting, tabular data, search ranking etc.
PaulHoule10 个月前
Generative AI is is a subset of deep learning which is a subset of machine learning.<p>Note there are a huge number of other ML approaches, two that are useful in tabular data (where LLMs tend to fail) are<p><a href="https:&#x2F;&#x2F;scikit-learn.org&#x2F;stable&#x2F;modules&#x2F;linear_model.html#logistic-regression" rel="nofollow">https:&#x2F;&#x2F;scikit-learn.org&#x2F;stable&#x2F;modules&#x2F;linear_model.html#lo...</a><p>and<p><a href="https:&#x2F;&#x2F;scikit-learn.org&#x2F;stable&#x2F;modules&#x2F;ensemble.html" rel="nofollow">https:&#x2F;&#x2F;scikit-learn.org&#x2F;stable&#x2F;modules&#x2F;ensemble.html</a><p>of which XGBoost is still winning competitions.<p>There is also the “old AI” based on logic that is doing well, see Donald Knuth’s notes on developments in SAT<p><a href="https:&#x2F;&#x2F;www.inf.ufrgs.br&#x2F;~MRPRITT&#x2F;lib&#x2F;exe&#x2F;fetch.php?media=inf5504:7.2.2.2-satisfiability.pdf" rel="nofollow">https:&#x2F;&#x2F;www.inf.ufrgs.br&#x2F;~MRPRITT&#x2F;lib&#x2F;exe&#x2F;fetch.php?media=in...</a>