TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Quantum error correction below the surface code threshold

3 点作者 EvgeniyZh9 个月前

1 comment

westurner9 个月前
&quot;Quantum error correction below the surface code threshold&quot; (2024) <a href="https:&#x2F;&#x2F;arxiv.org&#x2F;abs&#x2F;2408.13687" rel="nofollow">https:&#x2F;&#x2F;arxiv.org&#x2F;abs&#x2F;2408.13687</a> :<p>&gt; Abstract: <i>Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. In this work, we present two surface code memories operating below this threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder. The logical error rate of our larger quantum memory is suppressed by a factor of Λ = 2.14 ± 0.02 when increasing the code distance by two, culminating in a 101-qubit distance-7 code with 0.143% ± 0.003% error per cycle of error correction. This logical memory is also beyond break-even, exceeding its best physical qubit&#x27;s lifetime by a factor of 2.4 ± 0.3. We maintain below-threshold performance when decoding in real time, achieving an average decoder latency of 63 μs at distance-5 up to a million cycles, with a cycle time of 1.1 μs. To probe the limits of our error-correction performance, we run repetition codes up to distance-29 and find that logical performance is limited by rare correlated error events occurring approximately once every hour, or 3 × 109 cycles. Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.</i>
评论 #41459227 未加载