TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Show HN: PaperQA2, Agentic RAG for Science

8 点作者 mskar9 个月前
We&#x27;re excited to release PaperQA2, an open source RAG library specialized to work with the scientific literature. We&#x27;ve seen some really compelling results with it (<a href="https:&#x2F;&#x2F;paper.wikicrow.ai" rel="nofollow">https:&#x2F;&#x2F;paper.wikicrow.ai</a>), like superhuman performance at question answering and summarization when compared with expert scientists.<p>PaperQA2 is a major overhaul of our prior PaperQA system, it includes automatically obtained rich metadata for each paper, a CLI to work with local papers directly, a local full-text search engine for keywords searches over PDF files, a state-of-the-art algorithm for LLM-based re-ranking and contextual summarization (RCS), the ability to agentic RAG, and support for all LiteLLM compatible LLMs.<p>We hope that folks are able to use PaperQA2 to help improve their scientific workflows and the way they interact with the literature. It&#x27;s enabled many cool projects for us like (WikiCrow and ContraCrow), and we hope to see many more in the future.

暂无评论

暂无评论