TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Lessons Learned: Migrating to Mistral-Large-2411 for Production Code Reviews

4 点作者 Jet_Xu6 个月前

1 comment

Jet_Xu6 个月前
I&#x27;d like to share our technical journey migrating our code review system from Mistral-Large-2407 to 2411, and the key challenges we overcame. Here are the most interesting findings:<p>1. Prompt Pattern Evolution<p><pre><code> - Initial challenge: Direct model upgrade led to significant quality degradation - Root cause: Changes in 2411&#x27;s prompt processing architecture # Previous prompt format for Mistral-Large-2407 &lt;s&gt;[INST] user message[&#x2F;INST] assistant message&lt;&#x2F;s&gt;[INST] system prompt + &quot;\n\n&quot; + user message[&#x2F;INST] # New optimized prompt format for Mistral-Large-2411 &lt;s&gt;[SYSTEM_PROMPT] system prompt[&#x2F;SYSTEM PROMPT][INST] user message[&#x2F;INST] assistant message&lt;&#x2F;s&gt;[INST] user message[&#x2F;INST] - Solution: Implemented enhanced prompt patterns through LangChain </code></pre> 2. API Integration Insights<p><pre><code> - Built custom HTTP client interceptor for debugging - Discovered crucial differences in message formatting - Leveraged LangChain&#x27;s abstraction layer effectively </code></pre> 3. Key Technical Improvements<p><pre><code> - Enhanced review focus through optimized prompts - Improved output reliability and format compliance - Eliminated response truncation issues </code></pre> This is implemented in our AI Code Review Github APP LlamaPReview [<a href="https:&#x2F;&#x2F;jetxu-llm.github.io&#x2F;LlamaPReview-site&#x2F;" rel="nofollow">https:&#x2F;&#x2F;jetxu-llm.github.io&#x2F;LlamaPReview-site&#x2F;</a>]. Happy to discuss specific implementation details or share more technical insights about working with Mistral-Large-2411 in production.