TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Roaming RAG – Make the Model Find the Answers

23 点作者 JnBrymn6 个月前

2 条评论

JnBrymn6 个月前
RAG is a pain to set up, so I tried something different. Instead of dealing with vector DBs and all that complexity, just let the LLM navigate well-structured docs like a human—exploring outlines and diving into sections. It’s simple, and works great for stuff like technical manuals or llms.txt.
visarga6 个月前
I independently "invented" this 2 months ago, also for parsing 100 page long PDFs. Give each page a title and summary, but prepend as context the title+summary of previous 3 pages. In the end combine all titles+summaries to get a master index using the LLM. At runtime you first use the index to zoom into the desired sections to give the answer. I think this makes the RAG "smarter", not based on simple similarity.