TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Third Base (2001)

37 点作者 picafrost4 个月前

4 条评论

chungy4 个月前
One of my favorite parts in The Art of Computer Programming is when Knuth goes into alternative numeric bases. He makes mention there of &quot;base 2i&quot; as well, though he details it in a much older paper: <a href="https:&#x2F;&#x2F;dl.acm.org&#x2F;doi&#x2F;10.1145&#x2F;367177.367233" rel="nofollow">https:&#x2F;&#x2F;dl.acm.org&#x2F;doi&#x2F;10.1145&#x2F;367177.367233</a><p>Base 2i is particularly fascinating for allowing a numeric system that can represent all complex numbers without signs and without addition.
评论 #42806355 未加载
andrewla4 个月前
Almost all of these analyses of ternary hinge on the idea of efficiency of representation, being the (number of possible symbols) * (number of digits to represent).<p>But it seems way more useful to use the log of the number of possible symbols, in which case all bases (except unary, which is non-positional) have the exact same efficiency, and the argument becomes moot. It becomes largely a question of representation in reality, and binary wins on that front.<p>More exotic non-positional number systems seem way more interesting -- Fibonacci bases or Gray bases. Even balanced ternary if we have to break out of the binary paradigm.
评论 #42807065 未加载
评论 #42807202 未加载
sitkack4 个月前
The book from 1950 mentioned in the article <a href="https:&#x2F;&#x2F;web.archive.org&#x2F;web&#x2F;20100505110621&#x2F;https:&#x2F;&#x2F;bitsavers.org&#x2F;pdf&#x2F;era&#x2F;High_Speed_Computing_Devices_1950.pdf" rel="nofollow">https:&#x2F;&#x2F;web.archive.org&#x2F;web&#x2F;20100505110621&#x2F;https:&#x2F;&#x2F;bitsavers...</a>
PaulHoule4 个月前
I like balanced ternary a lot.