TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

ArchGW: Open-source, AI-native (edge and LLM) proxy for prompt traffic

2 点作者 sparacha4 个月前

1 comment

sparacha4 个月前
Why We Built ArchGW?<p>Traditional application architectures separate routing, security, and observability from business logic - so that developers can move faster without the tax of reinventing the wheel. LLM applications should be no different. ArchGW applies these patterns to prompts, providing a structured approach to building LLM applications.<p>How It Works<p>ArchGW runs as a separate process alongside application servers. It intercepts prompts before they reach the backend and applies transformations based on predefined rules and models:<p><pre><code> Preprocessing: Normalizes and analyzes prompt structure. Security Filtering: Rejects jailbreak attempts and unsafe inputs. Intent Mapping: Determines if a request maps to an API function. Function Invocation: Extracts arguments and calls backend APIs. LLM Routing: Chooses the right LLM provider based on latency&#x2F;cost constraints. Tracing &amp; Metrics: Adds W3C Trace Context headers, tracks errors, token usage, and request latency. </code></pre> Why a Dedicated Proxy?<p>Traditional application architectures separate routing, security, and observability from business logic—LLM applications should be no different. ArchGW applies these patterns to prompt processing, providing a structured approach to LLM integration.