TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Show HN: MCP-compatible distributed RPC layer for AI agents

3 点作者 lunarcave大约 2 个月前
Hey HN,<p>We&#x27;ve been hacking around with LLMs for a while and have encountered a specific problem with distributed tool calling.<p>The Problem<p>When building AI agents or LLM-automations in distributed environments, you typically:<p>- Need to build APIs for your distributed tools<p>- Require load balancers in front of tool replicas (e.g. in k8s environments)<p>- Must refactor long-running tools to work within HTTP timeout constraints<p>Our Solution: AgentRPC<p>AgentRPC addresses these challenges by converting any function into a consumer for a distributed message queue that works via long-polling. The consumers register with a centralized server which:<p>- Monitors their health<p>- Maintains context about function schemas<p>## Features<p>The AgentRPC SDKs provide:<p>- A unified MCP-compatible server<p>- Tool definitions in an OpenAI SDK compatible format<p>The AgentRPC server handles:<p>- Load balancing<p>- Automatic failover<p>- Observability<p>Because tool calling happens through an async HTTP-based API, it can handle tool calls well beyond HTTP timeout limits.<p>We currently support TypeScript, Go, and Python natively, with more SDKs in development.<p>Check us out: <a href="https:&#x2F;&#x2F;agentrpc.com&#x2F;" rel="nofollow">https:&#x2F;&#x2F;agentrpc.com&#x2F;</a><p>We&#x27;re still early, but keen to hear any feedback!

暂无评论

暂无评论