Seems to be cool, but, one of thing that most annoys me on studying machine learning is that I may dive as deep as it is possible in theory, but I can't see how it connects to the practice, i. e. how it makes me choose the correct number of neurons in a layer, how many layers, the activation functions, if I should use a neural network or other techniques, and so on...<p>If someone have something explaining that I'll be grateful