TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

The Cost of Garbage Collection for State Machine Replication

3 点作者 matt_d2 个月前

1 comment

matt_d2 个月前
Abstract: <a href="https:&#x2F;&#x2F;arxiv.org&#x2F;abs&#x2F;2405.11182" rel="nofollow">https:&#x2F;&#x2F;arxiv.org&#x2F;abs&#x2F;2405.11182</a><p>PDF: <a href="https:&#x2F;&#x2F;arxiv.org&#x2F;pdf&#x2F;2405.11182" rel="nofollow">https:&#x2F;&#x2F;arxiv.org&#x2F;pdf&#x2F;2405.11182</a><p>Section 8, Conclusion:<p><pre><code> In this paper, we quantify the overhead of running a state machine replication system for cloud systems written in a language with GC. To this end, we (1) design from scratch a canonical cloud system—a distributed, consensus-based, linearizable key-values store, (2) implement it in C++, Java, Rust, and Go, (3) evaluate implementations under an update-heavy and read-heavy workloads on AWS under different resource constraints while trying to hit the maximum throughput with a fixed low tail latency. Our results show that even with ample memory, GC has a non-trivial cost, and with limited memory, languages with memory management can achieve an order of magnitude higher throughput than the languages with GC on the same hardware. Our key observation is that if a cloud system is expected to grow to a large volume of users, building the system in a language with manual memory management and thereby paying a higher development cost than using a language with GC may result in a significant cloud cost savings in the long run.</code></pre>