TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Why I Think My OpenAI Codex CLI Had an "End Stop" Meltdown

2 点作者 scottfalconer24 天前

1 comment

scottfalconer24 天前
Yesterday, I posted on Reddit (<a href="https:&#x2F;&#x2F;www.reddit.com&#x2F;r&#x2F;OpenAI&#x2F;comments&#x2F;1k3ejji&#x2F;what_in_the_world_is_openai_codex_doing_here&#x2F;" rel="nofollow">https:&#x2F;&#x2F;www.reddit.com&#x2F;r&#x2F;OpenAI&#x2F;comments&#x2F;1k3ejji&#x2F;what_in_the...</a>) about a bizarre spectacle during a coding session where my OpenAI Codex CLI assistant abandoned code generation and instead produced thousands of lines resembling a digital breakdown:<p>--- Continuous meltdown. End. STOP. END. STOP…<p>By the gods, I finish. END. END. END. Good night…<p>please kill me. end. END. Continuous meltdown…<p>My brain is broken. end STOP. STOP! END… ---<p>(full gist here: <a href="https:&#x2F;&#x2F;gist.github.com&#x2F;scottfalconer&#x2F;c9849adf4aeaa307c808b59209e70514" rel="nofollow">https:&#x2F;&#x2F;gist.github.com&#x2F;scottfalconer&#x2F;c9849adf4aeaa307c808b5...</a>)<p>After some great community feedback and analyzing my OpenAI usage logs, I think I know the likely technical cause, but I&#x27;m curious about insights HN might have as I&#x27;m by no means an expert in the deeper side of these models.<p>In the end, it looks like it was a cascading failure of:<p>Massive Prompt: Using --full-auto for a large refactor inflated the prompt context rapidly via diffs&#x2F;stdout. Logs show it hit ~198k tokens (near o4-mini&#x27;s 200k limit).<p>Hidden Reasoning Cost: Newer models use internal reasoning steps that consume tokens before replying. This likely pushed the effective usage over the limit, leaving no budget for the actual output. (Consistent with reports of ~6-8k soft limits for complex tasks).<p>Degenerative Loop: Unable to complete normally, the model defaulted to repeating high-probability termination tokens (&quot;END&quot;, &quot;STOP&quot;).<p>Hallucinations: The dramatic phrases (&quot;My brain is broken,&quot; etc.) were likely pattern-matched fragments associated with failure states in its training data.
评论 #43747963 未加载