More context:
"Adhering to the “latch-free” philosophy, the Bw-tree delivered far better processor-cache performance than previous efforts.<p>“We had an ‘aha’ moment,” Lomet recalls, “when we realized that a single table that maps page identifiers to page locations would enable both latch-free page updating and log-structured page storage on flash memory. The other highlight, of course, was when we got back performance results that were stunningly good.”<p>The Bw-tree team first demonstrated its work in March 2011 during TechFest 2011, Microsoft Research’s annual showcase of cutting-edge projects. The Bw-tree performance results were dazzling enough to catch the interest of the SQL Server product group.<p>“When they learned about our performance numbers, that was when the Hekaton folks started paying serious attention to us,” researcher Justin Levandoski says. “We ran side-by-side tests of the Bw-tree against another latch-free technology they were using, which was based on ‘skiplists.’ The Bw-tree was faster by several factors. Shortly after that, we began engaging with the Hekaton team, mainly Diaconu and Zwilling.”<p>“A skiplist is often the first choice for implementing an ordered index, either latch-free or latch-based, because it is perceived to be more lightweight than a full B-tree implementation”, says Sudipta Sengupta, senior researcher in the Communication and Storage Systems Group. “An important contribution of our work is in dispelling this myth and establishing that latch-free B-trees can perform way better than latch-free skiplists. The Bw-tree also performs significantly better than a well-known latch-based B-tree implementation—BerkeleyDB—that is widely regarded in the community for its good performance.”<p>[1] <a href="http://research.microsoft.com/en-us/news/features/hekaton-122012.aspx" rel="nofollow">http://research.microsoft.com/en-us/news/features/hekaton-12...</a>