As mentioned, one should really be using a kernel density plot instead of a histogram, except when there are already classes in the data.<p>In R, one can simply do:<p><pre><code> library("ggplot2")
library("datasets")
ggplot(faithful, aes(x=eruptions)) + geom_density() + geom_rug()
</code></pre>
which gives a chart like this (<a href="http://jean-francois.im/temp/eruptions-kde.png" rel="nofollow">http://jean-francois.im/temp/eruptions-kde.png</a>). Contrast with:<p><pre><code> ggplot(faithful, aes(x=eruptions)) + geom_histogram(binwidth=1)
</code></pre>
which gives a chart like this (<a href="http://jean-francois.im/temp/eruptions-histogram.png" rel="nofollow">http://jean-francois.im/temp/eruptions-histogram.png</a>).<p>Edit: Other plots mentioned in this discussion:<p><pre><code> ggplot(faithful, aes(x = eruptions)) + stat_ecdf(geom = "step")
</code></pre>
Cumulative distribution, as suggested by leot (<a href="http://jean-francois.im/temp/eruptions-ecdf.png" rel="nofollow">http://jean-francois.im/temp/eruptions-ecdf.png</a>)<p><pre><code> qqnorm (faithful$eruptions)
</code></pre>
Q-Q plot, as suggested by christopheraden (<a href="http://jean-francois.im/temp/eruptions-qq.png" rel="nofollow">http://jean-francois.im/temp/eruptions-qq.png</a>)