This issue is a fundamental one that everybody teaching programming or computer science must answer. Is it better to teach CS from the ground up or top down?<p>The ground up approach is something like SICP, with fundamentals in lambda calculus or Turing machines. Students learn rules such as how a Lisp evaluates an expression and write programs which apply the rules. It's not necessary that this be taught using Lisp, but it seems to be popular, because it greatly reduces distractions when understanding and writing actual programs. In any case, the ground-up approach generally teaches first a system of rules, and only once the rules are understood does it move on to programs.<p>The top-down approach, on the other hand, starts with programs. Often the students are given a partially written program and are asked to improve it. The curriculum doesn't focus on rules because they all have exceptions. It's much more like engineering and less like mathematics. As the article says, nowadays "a real engineer is given a big software library, with a 300-page manual that’s full of errors. He’s also given a robot, whose exact behavior is extremely hard to characterize...."<p>What's better? Some schools (such as my alma mater, Brown) have two intro classes, one for each method of teaching. I chose the rules-based bottom-up approach when I was an undergrad, and it was very good, and I was convinced it was the better way to go.<p>But I'm losing my conviction, partially because MIT is changing it and they must know what they're doing (heh), and partially because I'm coming to the understanding that everybody uses libraries and this is not going to change. The top-down approach doesn't really provide any sense that there should be libraries, that code should be organized, that you can write to an interface and document your code. People can learn these sorts of things later, though.