TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Machine Learning Course Materials

125 点作者 cdl将近 12 年前

4 条评论

fintler将近 12 年前
Stanford&#x27;s CS229 was also on Coursera.<p><a href="https://class.coursera.org/ml/lecture/preview" rel="nofollow">https:&#x2F;&#x2F;class.coursera.org&#x2F;ml&#x2F;lecture&#x2F;preview</a>
评论 #6164662 未加载
评论 #6164659 未加载
评论 #6165934 未加载
pauloortins将近 12 年前
I wrote a blog post with some material suggestions to learn Machine Learning. If you want, visit my blog post:<p><a href="http://pauloortins.com/resources-to-become-a-ninja-machine-learning/" rel="nofollow">http:&#x2F;&#x2F;pauloortins.com&#x2F;resources-to-become-a-ninja-machine-l...</a>
gtani将近 12 年前
As a reference, you&#x27;ll want one or two of the Big 6 texts, by Murphy, Koller&#x2F;Friedman, Bishop, MacKay, and Hastie et al ESL. The first review is good <a href="http://www.amazon.com/product-reviews/0262018020/ref=dp_top_cm_cr_acr_txt?showViewpoints=1" rel="nofollow">http:&#x2F;&#x2F;www.amazon.com&#x2F;product-reviews&#x2F;0262018020&#x2F;ref=dp_top_...</a><p>Also, there are many freely available texts on ML, data mining, stats&#x2F;prob distributions, linear algebra, optimization etc, incl Barber, Mackay and ESL. See <a href="http://www.reddit.com/r/MachineLearning/comments/1jeawf/machine_learning_books/" rel="nofollow">http:&#x2F;&#x2F;www.reddit.com&#x2F;r&#x2F;MachineLearning&#x2F;comments&#x2F;1jeawf&#x2F;mach...</a>
tomcrisp将近 12 年前
For a second, I misread this as &quot;Machine Learns Course Materials&quot;. Must make this happen - wonder if I can use these machine learning course materials to help.