TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Machine Learning with scikit-learn

72 点作者 derpapst超过 11 年前

4 条评论

ColinWright超过 11 年前
I cannot tell you how much I hate these drip-feed presentations. There isn&#x27;t even an indication of how long it goes for. The early stuff is obvious (for me) - how many times do I have to click to get to the interesting bits?<p>There might be some great stuff here, but many of your potential audience will never find out, because they&#x27;ll give up.
评论 #6507296 未加载
评论 #6508144 未加载
blauwbilgorgel超过 11 年前
Andreas Mueller is one of the core devs of scikit learn.<p>He is active on Kaggle.com too.<p>For more practical ML projects see: <a href="https://github.com/amueller" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;amueller</a>
评论 #6507871 未加载
sjtgraham超过 11 年前
I know what I&#x27;m doing tonight. Great idea including sample data to play with in the library! Is that the MNIST data set?
评论 #6508120 未加载
评论 #6508302 未加载
tucson超过 11 年前
I&#x27;d like to know more about slide 6:<p><a href="http://amueller.github.io/sklearn_tutorial/#/6" rel="nofollow">http:&#x2F;&#x2F;amueller.github.io&#x2F;sklearn_tutorial&#x2F;#&#x2F;6</a><p>Why the [Classification][100K sample?] checkpoint?<p>And more info in general about this whole cheat-sheet.
评论 #6508331 未加载