TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

JuliaDiff – Julia packages for automatic differentiation

3 点作者 idunning超过 10 年前

1 comment

lutusp超过 10 年前
Quote: &quot;One option is to explicitly write down a function which computes the exact derivatives by using the rules that we know from Calculus. However, this quickly becomes an error-prone and tedious exercise.&quot;<p>There&#x27;s the alternative of algorithmic symbolic differentiation. For most well-behaved functions, symbolic differentiation produces useful results (not true for the reverse case of symbolic integration). Many readily available libraries now produce symbolic differentiation and other similar results. Users should not dismiss this approach out of hand.