TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Text Understanding from Scratch Using Temporal Convolutional Networks

61 点作者 drewvolpe超过 10 年前

4 条评论

sgt101超过 10 年前
Astonishing? 3% better than bag of words after n days training on GPU's? I have misunderstood because I am not astonished.
评论 #9015107 未加载
eva1984超过 10 年前
What surprises me is that (BOW model + logistic regression) works just fine in most of the benchmarks(except for Amazon Review), interesting paper anyway. Could it be that because the vocabulary for BOW is limited to 5000, a lot of information is lost?
评论 #9013173 未加载
sushirain超过 10 年前
Open questions:<p>* Compare to RNNs with character level input.<p>* Compare to dedicated methods of sentiment analysis and topic categorization.
petercooper超过 10 年前
This paper is pretty fascinating, thanks! Having trouble visualizing it but getting there..